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ABSTRACT
Skin flap design has traditionally been based on geometric models which
ignore the elastic properties of skin and its subcutaneous attachments.
This study reviews the theoretical and experimental mechanics of skin
and soft tissues, and proposes a mathematical model of skin deformation
based on the finite element method. Finite element technic facilitates
the modeling of complex structures by analyzing them as an aggregate of
smaller elements. An animal model is developed to study the deformation
and mechanical properties of skin, including its viscoelastic properties
(hysteresis, creep, and stress relaxation). A new skin extensometer,
constructed with digital stepper motors and controlled with a
microcomputer, is described to measure these properties for both skin
and its subcutaneous attachments. Deformation grids are quantitated
from photographs with a digitalizing tablet, and computer software is
introduced to standardize and analyze them. The mathematical model is
used to simulate wound closures such as the ellipse and rectangular
advancement flap. In addition, a series of mathematical experiments are
performed to simulate deformation of a strip of skin; the relationships
between the various elastic constants are investigated, and a comparison
of these simulations with actual deformation is presented. Limitations

of the model and areas for future investigation are discussed.
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I. Introduction

The modeling of wound closure -- an historical overview

Complex wound closures were performed in India as early as 300 BC.1
Since that time, the major advance in the science of wound closure
has been the progressive understanding of the skin tension 11‘nes.2
These 1ines were described by Dupuytren in 1834, when he noted that
a round puncture wound in a suicide victim assumed a fusiform

shape.3

His observations were elaborated upon by Langer in 1861,
who made systematic observations on the skin of cadavers by
inserting an awl into the skin and diagramming the resultant major
axis of the e]]ipsis.4 Kocher in 1892 was the first to advocate
that surgical incisions follow Langer's 11'nes.5 Cox in 1941
performed a more extensive study on unclaimed bodies, photographing
the cleavage 1ines.6 He noted some differences between his study
and that of Langer, and documented that the cleavage lines remained
in skin removed from the body. More recently the importance of
placing surgical excisions in the relaxed skin tension lines

(perpendicular to the lines of maximal extensibility) has been

emphasized by Borges.7

The application of mathematics to skin flap design really began
with Limberg.8’9 He studied triangular skin flaps with paper
models and plane geometry, and pub]ished his classic book in 1946,

Others have extended the application of plane geometry to describe
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skin flap design.lo’ll’12

MacGregor's description of the
theoretical basis for the Z-plasty in 1957 is an excellent example
of this approach. All of these mathematical descriptions, however,
utilize plane geometry, and none allow for the elasticity of the

skin or skin attachments.

Aims and objectives

Current models of wound closure are based almost completely on
plane geometry or paper models. Surgeons are well aware of the
complex elastic properties of skin and subcutaneous tissue and use
them effectively, but they have no realistic technic with which to
model wound closures. The aims and objectives of this study are

threefold:

1. To review the relevant literature, both experimental and

theoretical, on the biomechanics of skin and soft tissue.

2. To develop a preliminary mathematical model, based on the
finite element method, that could eventually be used as a

practical technic to study and design wound closures.

3. To design and standardize an animal model to estimate the
elastic constants necessary for the mathematical model, and to
correlate skin deformation in the animal with the mathematical

model .
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II. Biomechanics of skin and soft tissue

A. Biomechanics of biological solids

A quantitative analysis of the mechanical properties of skin and
soft tissue requires application of engineering princip]es.l3
These mechanical properties are defined in terms of the deformation
produced by a given force over time. Force is standardized as
force per unit area or stress and can be related either to the
original cross-sectional area or to the deformed cross-sectional
area. Stress placed on a physical material acts in a specific
direction, and therefore is defined as a stress vector. The
standardized notation for stress vectors acting on a small cube is

seen in Figure 1. The stresses perpendicular to the surface are

normal stresses; the other stresses are shearing stresses.

When a solid is deformed, the change in length is defined in terms
of strain. For the simplest case, a rod of original length LO is
stretched to a new length of L (Figure 2). Various dimensionless

ratios can then be used to represent this change in length:



T11

T21

X1

X3

X2

Figure 1. Orientation of standardized stress vectors acting on a small cube.
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Figure 2. Elongation of a simple rod of length L0 to length L by a force T.
The width changes from Wy to w. The stretch ratio and strain measures are

defined in terms of these quantities.
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L
1. The stretch ratio or A =
Lo
2. Strain measures
L'Lo L“‘Lo
€= E:
Lo L
L2 - Lg2 L2 - 1,2
3. e = — £ =
212 2L g2

These strain measures are all roughly equal for very small
deformations (infinitesimal elongations), but they become different
for large deformations (finite elongations). Strain measures
reprasent a vector, defined with the same orientation seen in
Figure 1. When analyzing deformation of a physical material, one
is usually not interested in actual motion or displacement of the
entire body but in the relative displacements of parts of the body.
For this reason the actual strains or Xx;, X,, X3 displacements are
transformed into three strain invariants which measure only

relative deformation.

Hooke's law applies to many engineering materials subject to small
strains (infinitesimal strains) and for uniaxial deformation can be
written o = Ee, where o 1js stress, E 1is a constant (Young's
modulus), and e 1is strain. Hooke's Taw can be exactly applied
only to materials with a Tlinear spress-strain relationship and for
infinitesimal strains. A Hookean elastic solid is one that follows

Hooke's Taw. When describing a three-dimensional Hookean solid,
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multiple elastic constants are required. The equations can be
greatly simplified, however, for an isotropic instead of an
anisotropic material. Isotropic materials have the same elastic
properties in all directions (equal stress produces equal
displacement in any direction), whereas with anisotropic materials
elastic properties have a directional variation. Hooke's law can
be further simplified for a simple two-dimensional (versus a
three-dimensional) problem. A two-dimensional description of an
isotropic Hookean solid requires only two elastic constants: E or
Young's modulus, which is the slope of the stress-strain curve; and
v or Poisson's ratio, which is the ratio of the contraction of the
surface in one dimension when one elongates it in the other (both
expressed in terms of strain).14 Just as elastic bodies can be
jdealized as Hookean elastic solids, liquids can be idealized as
Newtonian fluids. For an elastic body, the stress and strain are
related by unique single-valued function, and this relationship is

not changed with variation in strain rates or with repeated strain.

Liquids are traditionally modeled according to the theory of
hydrodynamics which states that perfectly viscous liquids obey
Newton's law:

de

o=n—

dt
where n 1is viscosity, € 1is strain, and t is time. With
Newton's law, stress is directly proportional to the rate of strain

but independent of the strain itself.
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Many biologic materials combine the characteristics of elastic
solids and viscous liquids and therefore are termed viscoelastic.
Some common properties of viscoelastic materials are hysteresis,
stress relaxation, and creep. Hysteresis implies that
stress-strain relationships in cyclic loading and unloading are
different. If soft tissue is stretched and then allowed to return
to its original length, the stress-strain curve with Toading will
not superimpose on the unloading curve. Stress relaxation
describes the decreasing stress seen when a constant strain is
placed on a viscoelastic material. Creep refers to the increasing
strain or length of a material over time when placed at a constant

stress. Most biologic solids are viscoelastic.

Various mechanical models of viscoelastic behavior have been
described. Based on Hooke's law and Newton's law, these models are
a combination of a lTinear spring with a Young's modulus E and a
dashpot with a viscosity n . The elastic spring produces a
deformation directly proportional to the load; the dashpot produces
a velocity proportional to the load. The dashpot can be likened to
a shock absorber. These two basic components are then combined in
various ways to describe the viscoelastic material. The two
simplest combinations are the Maxwell and Voight models seen in
Figure 3. An excellent theoretical discussion of these models is

presented by Jamison.15



MODELS OF VISCOELASTICITY

E L |n E [=—]n

il

Elastic Viscous Maxwell Voight

Figure 3. Models for viscoelastic behavior of soft tissue. The Maxwell and
Voight are the most common models for viscoelastic behavior. The elastic
spring obeys Hooke's law and produces a deformation proportional to the load;
the dashpot obeys Newton's law and produces a velocity proportional to the

load.
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Experimental investigations -- a review

Skin has been extensively studied both in vitro and in vivo, and in
both human and animal models. Skin is a complex organ which is
anisotropic, has extremely nonlinear stress-strain properties, and
exhibits viscoelastic or time-dependent behavior. The major
structural components of the skin which affect mechanical behavior
are the elastin fibers, the collagen fibers, and the ground
substance. Collagen is the most important structure, representing

16 yhite

approximately 72% of the dry weight of dermal tissue,
elastin represents 4%, and the ground substance 20%. Because of
its complexity, almost all significant work has been done on
isolated skin in vitro. There has been very little sophisticated
work done in vivo, and almost no study of the mechanical properties
of the subcutaneous attachments to the skin. The problems with
deterioration of skin after it is removed from the living animal

17 who developed a quick freeze-low

were noted by Marangoni et al,
temperature storage technic in an attempt to maintain the skin in
the in vivo condition as long as possible. Even with such a

technic, however, the skin has lost its blood supply, nerve supply,

and attachments to the surrounding skin and subcutaneous tissue;

all of which must greatly alter its mechanical properties.

Mechanical properties of collagen have been well studied, both in
strained and unstrained states. Histologic studies of collagen

fibers by both 1ight and electron microscopy demonstrate a wavy and
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somewhat random pattern of the fibers in an unstrained specimen.
As a specimen of skin is progressively strained, the fibers become

18,19,20,21 Morgan22

oriented in the direction of the strain.
performed an extensive series of experiments on collagen fibers
obtained from ox hide and described stress-strain curves which
could be adequately described by the power law: o = 0.386 E1.23
where E = strain, o = stress in kg/sq mm. Elden provides a

sophisticated engineering analysis of collagen fibers including

their orientation and hydration status.23

Elastin exists in the skin as a composite assembly of small
tapering fibers which form a network. These small ropelike
filaments are paired structures, about 1.5 nm in width, which are

25 dissected

periodically Tlinked 1ong1'tud1'na11y.24 Carton et al
single elastic fibers free from 1igamentum nuchae of the ox and
performed stress-strain measurements on these single fibers. The
strain-tension curves of these fibers were very consistent and
demonstrated an exponential relationship between stress and strain.
He was able to fit his tension-strain curves for single elastic
fibers to the regression:

e=1.3-A exp'bt
where e is strain, t is tension in dynes, and A,b are
constants. ETlastin is the only mammalian protein known to have
truly elastic properties. Da]y26 treated skin specimens with the

enzyme elastase, which degrades elastin but does not affect

collagen. When the elastase treated human cadaver skin was tested,
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it was found that the elasticity of the skin had been almost
totally lost. Similar results were described by WOod27 in
experiments on ligamentum nuchae. D1'ck28 analyzed skin discs from
cadavers mechanically and histologically; he concluded the loss of
elastin fibers in older individuals resulted in a loss of skin
resistance to deformation at low stress. King and Lawton29
investigated the behavior of elastin-rich tissues in terms of
elastomer theory and found good agreement with experimental data.
When other structural components such as collagen and ground

substance are present, however, the elastomer theory is no longer

applicable.

The amorphous matrix or ground substance in which the collagen and
elastin fibers are embedded is a third factor which affects the
mechanical properties of skin. Harkness and Harkne5530
demonstrated increasing creep (elongation with constant load) of
collagenous soft tissue treated with trypsin or chymotrypsin. They
attributed this mechanical change to loss of the cementing
substance in connective tissue. Minns, Soden, and Jackson
performed stress-strain and relaxation studies on human tendon,
aorta, and bovine ligamentum nuchae after removing the ground
substance with an enzyme or chelating agents.31 They noted a
decrease in stress level, stiffness, stress relaxation, hysteresis,
and other time-dependent effects in all three tissues. These

changes were explained primarily as a reduction in the viscosity of

the interfiber matrix.
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The majority of the experimental investigations into the mechanical
properties of skin have utilized uniaxial test procedures. With
uniaxial testing, a length of skin is deformed in one direction,
and the resulting stress-strain relationship determined. A typical
stress-strain curve for human skin is seen in Figure 4. The
accepted mechanism is that the initial deformation (A in Figure 4)
is due to deformation of the delicate elastin network, the second
part of the curve (B) is due to a gradual straightening of the
randomly oriented collagen fibers, and the final part of the curve
(C) results when the majority of the collagen fibers are elongated

in the direction of the str‘ess.g’z’33’34

There have been many investigations of the mechanical properties of
both animal and human skin, using uniaxial tests in vitro. Many of
these early experiments were flawed due to unsophisticated
equipment and poor control of such variables as temperature and
humidity. Early studies by wohh'sch35 were performed by recording
the displacement of strips of skin when loaded with weights. He
recorded both the load elongation properties of the skin as well as
some of the viscoelastic properties. Ridge and Wright36’37’38
developed a skin extensometer which stretched strips of skin 1 cm
in length by 0.4 cm in width at a constant rate of 0.2 inches per
minute. They characterized the resulting stress-strain curves with

the equation

Cc + kLb

e

where e = extension, L = load, and C, b, and k = constants.



>
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(a) L (b)

PIA,

Stress

Strain  AL/L,

Figure 4. Typical stress-strain curve for soft tissue. (From Daly and

Odlund, J Invest Dermatol 73:85, 1979.)
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They felt that the constant b reflected a specific property of
the collagen fibers, and the constant k represented the condition
of the fiber network, which was related to the length and area of
the fibers. Kenedi, Gibson, and Da]y31 also performed a series of
uniaxjal tests on cadaver skin harvested from the anterior
abdominal wall using a static testing procedure which allowed five
minutes to elapse between each increase in load. Their data
revealed fairly typical stress-strain curves. The most significant
result from their tests was a large variation in Poisson's ratio.
The contraction in width with a given extension varied from 0.2 to
more than 1.0.

Da]y40 further refined uniaxial testing. He first appreciated that
for consistent results the specimens must be tested in a constant
temperature, humidity, and pH, and with a constant strain rate. In
addition to measuring stress-strain curves and Poisson's ratio, he
performed extensive experiments documenting stress relaxation and

4 also performed a

creep in human cadaver skin. Ridge and Wright
series of experiments with an extensometer in which they stretched
pieces of skin with and against the normal skin tension lines.
They were able to show a clear difference in the directional

mechanical properties in the skin, which corresponded to Langer's

lines.

In addition to these in vitro uniaxial tests, a number of

investigators have attempted in vivo uniaxial testing. Gibson,
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Stark, and Evans42 demonstrated with an in vivo skin extensometer,
attached to the skin with tabs, that the direction of maximal
extensibility is at right angles to Langer's lines. Barbenel,

Evans, and F1'n1ay43

described a rotary device, attached by adhesive
to the forearm of a patient, which they utilized to measure the
viscoelastic properties of the skin. The most interesting result
of their experiments was a surprising independence of their
mechanical measurements from the frequency of the displacements.

40 also experimented with both uniaxial tensions and rotary

Daly
torque motors to perform in vivo experiments. He demonstrated a
broad similarity between the mechanical behavior of skin in vivo
and in vitro, but the additional variables prevented absolute

44 has

measurements of mechanical properties in vivo. Ohura
recently refined a similar device and has used it in multiple
clinical situations to Took at clinical wound healing problems.

145 studied the mechanical properties of human skin in

Wijn et a
vivo with both the uniaxial strain technics and torsion technics.
They found that on a homogenous isotropic medium (a sheet of
pararubber) both methods gave very consistent values. However,
when they applied both technics to the forearm of a volunteer there
was considerable variation between the technics. Thacker et a]46
also described and utilized an in vivo extensometer for uniaxial

47 designed a complex device which uses

testing. Alexander and Cook
a strain-gauged pretension device to determine the underlying skin
tension and a low pressure suction attachment to determine

two-dimensional tension-extension action.
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Uniaxial experiments cannot exactly define the mechanical
properties of a three-dimensional solid. More specifically, the
constitutive equations that characterize soft tissues in three
dimensions cannot be generalized from one-dimensional data. It is
possible to determine three-dimensional mechanical properties from
two-dimensional tests for an incompressible solid. Most
biomechanists feel that for practical analysis the skin can be
treated as an incompressible solid. Lanir and Fung48 have
developed such a two-dimensional experimental system for biaxial
testing. It is an optomechanical system in which a rectangular
specimen of skin floats in physiologic saline. The specimen is
hooked along its edges by many small staples (up to 68 in number).
Each hook connects by means of a small thread to a
force-distributing platform, where tension can be individually
adjusted. Stretching of the specimen can be performed at a
variable rate, and true two-dimensional measurements made. They
utilized this device to measure the biomechanics of rabbit skin.
In their study the deformed skin always returned to its predeformed
state so long as no surface dimension had been allowed to decrease
below its initial unstressed value. This is obviously different
from the uniaxial tests in which the skin essentially always
diminishes in lateral diretions and usually does not return to its
prestress state. Their experiments clearly documented the

anisotropy in various directions. Bijaxial tests showed:
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1. Stress-strain relations are extremely nonlinear.

2. Hysteresis was present at all strain rates.

3. Stress-strain relationships were minimally dependent on the
strain rate.

4, The relaxation curve does not terminate at the origin and

returns to it only after a long period of relaxation.

A comparison of uniaxial and biaxial stretch tests on the same
specimen shows that for a given stretch ratio in the Toading
direction, the stress with the uniaxial test is considerably lower
than than in the biaxial stress condition. This same experimental
setup was utilized by Schneider, Davidson, and Nahum49 to study the
mechanical characteristics of human cadaver skin. They also noted

that skin was a viscoelastic material which had distinct

anisotropic properties.

Theoretical work -- a review

An accurate biomechanical description of skin requires a more

theoretical approacﬁ than the empirical equations presented thus

far. The major advocate of this theoretical approach has been

Fung.13 He has pointed out that Young's modulus is a relatively
meaningless number on a stress-strain curve unless an exact stress
level is specified. He also notes that the customary application
of the infinitesimal theory of elasticity, which deals with small

strains (such as 0.2%) to a material such as skin which has a 10%
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to 40% deformation, leads to inaccuracies. He proposes an
exponential stress-strain function which can be applied to uniaxial
tests, such as one-dimensional experiments on rabbit mesentery,
muscle, and sk1'n.13’50’51 The following equations were described
by Fung in 1967 and 1981 and essentially represent the first

derivative of stress vs time as a straight line:

1. — = aT+8)

T is Lagrangian stress, load divided by original cross

sectional area

A is extension ratio, deformed length divided by original
Tength

a + B8 are constants

a is slope of A vs dT/da

Integration gives:

2. 7 +B= Ce*?

C is an integration constant.

To find the integration constant:

(A=2%) _

3. 1= (7* + g)e® 8

When T=1*
A=A*
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If A is referred to the original Tength then:

T=0 when =1 and:

T*e-(l( A*_l)

4' B= T oo s ——
1_e-or.( A*-1)

For Hookean material dT/dX = constant

One of the most common approaches to modeling bodies which can
undergo finite deformation is to postulate a strain-energy
function. The work of Veronda and Westmann is typical and will be

presented as an example of this approach.52

In order to deform an elastic body, a certain amount of work is
required which is stored in the body as strain energy. Therefore
for a homogenous deformation of an elastic isotropic material the

following strain-energy function can be defined:

cidl1.=W( Ai)

Dt Sy, D
—

W is strain energy function per unit volume of undeformed
body

g, is stress per area undeformed body

A; is ratio of principle extension of the deformed body to the
initial length of undeformed body
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The three strain invariants are:

2. 2 2 2
I =X +2 +2A
1 1 2 3
3. 2 2 2 2 2 2
I =X A + A A +21 A
2 1 2 2 3 3 1
2 2 2
4, I =x A A
3 1 2 3
5. From =1
oW
g, = —
1 A

6. Total derivative is:

W I, W oI, M 3,

0, = — — 4 — — + — —

1
9 9A. d oA, ] oA,
Il i 12 i 13 i

7. Substitute derivatives from 2, 3, 4 into 6:

2
o= 2[a; My, M _ I3 W, W)

T, 1 e, 3, A12 3, 313

8. For the uniaxial case with o;=0, 05=03=; and the isotropic
case for which

12= As
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2 2
9. For an incompressible material I3 =1 and A, = A3 =-¥L—-:
A
o - oW 1 oW
2(x;- )

A

10. The strain energy function is determined by analysis of
experimental data:

W= cl[eB(Il'3)—l]+c2(12-3)+g(13)

g(1) =0
Cis Cp, B are constants

11. Considering the material incompressible, and curve fitting the
uniaxial experimental data from cat skin, one can determine
the appropriate values for ¢y, €y, and g. Using their

experimental data and equation 10 yields:

1,-3)

W = 0.0134[e4'4( - 1] - 0.0295(I,- 3) + g(I3)

Blatz, Chu, and Way1and53

propose an alternative to the functions
of Fung. They present an elastic model for the loading curve that
is applicable to large deformations. Fung, also working with
finite deformation theory, chose an exponential stress-strain law.
Blatz, Chu, and Wayland, however, selected a power-law form of the
function which fits very nicely with experimental data. They

initially chose to represent the strain energy as an arbitrary

logarithmic function of the stretch ratios as follows:
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Strain energy function:

W=] £(In ;)

A power Taw of f is selected:

f (In A1)= C (Aia -1)

Stress stain relationhip for uniaxial tension:
or= (26/a)[2% - (1/}\0‘/2)]

a and G are experimentally determined constants.
o is load per unit of the undeformed area
A is stretch ratio - the length of deformed to undeformed length

They compared their power law to experimental data for uniaxial
tests on human papillary muscle and frog muscle, and to strip
biaxial data on rabbit mesentery. In each of these cases a good
correlation was found with experimental data. They also developed
an alternate form of biaxial testing based on a fan-shaped segment
of the rabbit mesentery and described in terms of radial and
circumferential stress.

Multiple other authors, including Cr‘1'sp,54 Demiray,Sb’56 a

nd
A]]aire,56 have described the application of strain energy
functions to skin. Crisp reviews and compares these functions, and
concludes that any worthwhile function will require an experimental
approach over a wide range of deformation states and a basis in

55

finite (versus infinitestimal) mechanics. Demiray™™ in 1972
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proposed a strain-energy density function exponential in the strain

56 in 1976 presented a relatively

invariants; Demiray and Vito
simple form of the strain-energy density based on numerical

experimentation:

a and B are material constants

I, is a strain invariant

They matched this function to experimental data from the literature

for papillary muscle and artery and found a good correlation.

Allaire et a157 in 1977 proposed a finite deformation model of
human skin based on in vivo measurements. They felt that over the
physiologic load range the strain-energy function for uniaxial
deformation could be expressed as a linear function of the first
two strain invariants and a quadratic function of the third. Thus
only three independent constants were necessary to specify the
strain-energy function; this formulation was much simpler than the

similar formulation by Veronda and Westmann52 for cat skin.

Tong and Fung58 in 1976 described a pseudostrain potential for

skin. Their model was based on experimental data for rabbit skin
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collected by Lanir. They observed during their experiments that
the stress-strain curves are essentially independent of the strain
rate in loading-unloading cyé]es. They also noted that under
repeated Toading-unloading cycles the tissue became preconditioned
so that a state of homeostasis was achieved. The equations
developed by Tong and Fung apply only to the loading process
(increasing strain) in a preconditioned specimen; Because of these
limitations their strain-energy function does not have a true
thermodynamic meaning, and therefore they term their equations

pseudostrain potentials:

Pseudostrain potential

P, W= f(q.e) + C exp[F(a,e)]

where

2 2
= +
flase) = ajer; * 0,8y, 20,2118,

2 2 2 3 3 2 2

- + + + + + +
F(a,e) = a,e a.e a.e 2aee, Y181t v,8, v48:8,% v58,8,

ap> Ggeses Aps Bpene, yieee yoo and ¢ are constants

exp ( ) is the exponential function

W is the strain energy per unit mass

Py is density of material in the initial undeformed state

e.. is the Green strain tensor (referred to undeformed state)

1]
i, j range over 1, 2, 3
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59,60 41 1973 and 1975 developed the concept of the skin

Danielson
as an elastic membrane. He applied the mathematical theory of thin
extensible membranes to skin. The classical tension-field theory
requires that the stress along a tension ray be linearly related to
the displacement and therefore modifications are required to apply
it directly to skin. The concepts developed by Danielson and
Atrajan require that the skin undergo large deformation and that
the tension rays extend all the way to the outer boundaries.
Tension is developed as a ray from the deformed site and is
independent of lateral connections. They use a simple exponential
stress-strain law and, applying their tension-field theory to the

experimental Z-plasty results of Furnas,61 show a reasonable

approximation.

Many investigators have attempted to derive a structural theory for
skin and other collagen-containing tissues. These efforts were

62 in 1979, who then presented his

well summarized by Lanir
structural model for the biaxial stress-strain relations of soft
collagenous tissue. His model is based on a network of collagen
and elastin, with two variations: 1) tissues with a Targe number
of collagen crosslinks and elastin-induced undulation; and 2)
tissues with a low density of collagen crosslinks and collagen
undulations which are not related to elastin. He defines both the
collagen and elastin fibers as linearly elastic and therefore

associated with a single spring constant each. The interaction of

the ground substance is ignored. His model describes a biaxial
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stress-strain relationship for flat collagenous tissue fairly

effectively.

III. A finite element model of skin deformation

A.

The finite element method

"The engineer in need of numbers with which his design process can
be described is often impatient with a 'properly formulated'
problem for which complex equations exist, but for which only
comparatively trivial solutions can be achieved by classical

mathematics."

This statement by Z1‘enk1‘ew1‘cz63 describes the historical
development of the finite element method. Faced with complex
equations for the elastic continuum, which were in many cases
insoluble, the engineers developed the finite element method which
reduces the continuum to an assembly of discrete elements. The
technic divides the domain of the solution into a finite number of
simple subdomains, the finite elements. The finite element model
was initially developed by engineers in the context of physical
elements such as rods and beams, but has evolved into a powerful
analytical tool with a solid theoretical basis. The situation of
the surgeon studying skin flap design seems analogous to that of

Zienkiewicz's engineer. Clinical needs dictate the design of
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complex wound closures, but these are currently based on inadequate
plane geometric models. The theoretical investigations of soft
tissue mechanics, however, have resulted in equations too complex

to solve practical problems.

The finite element method, in essence, is a technic to approximate
the solution of a continuous function with a series of trial
functions (shape functions). Visually one can imagine the
one-dimensional 1ine, seen in Figure 5, whose mechanical properties
can be described by a continuous function. 1In the finite element
method this 1ine is subdivided by a series of nodes. The
properties of the line can then be described by a series of shape
functions ("hat" functions) centered at each node. For the more
complicated two-dimensional system with triangular elements, the
shape function describes the displacement of a point in the
triangle as a function of displacement of the node or triangular
vertex. Visually, for a two-dimensional problem with one central
vertex and surrounding triangles, imagine 1ifting the node or
vertex off the plane of the paper; a "circus tent" would be
described. In this case the shape function ("tent" function)
describes the properties of a simple two-dimensional structure.
The same illustration for multiple vertices would describe a
"geodesic dome."

64

The classic work of Courant™ " in 1943 defined the concept of

breaking the elastic continuum into triangular finite elements.



SHAPE FUNCTIONS

One dimension: "Hats”

e A0

Two dimensions - one vertex: "Circus tent”

Two dimensions - multiple vertlces
"Geodesic dome"” - -

Figure 5. A visual interpretation of the shape functions for one- and
two-dimensional structures. One-dimensional shape functions can be

interpreted as hat functions. A two-dimensional shape function can be

visualized as a tent function.
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Initially the technic was Timited to structural engineering fields.
Excellent descriptions of the mathematical basis for the finite

65,66 14 and others have

element method are available. Zienkiewicz
applied the finite element method to nonstructural fields such as
fluid mechanics, heat conduction, and biologic problems. Advances
in the ability of modern digital computers to handle the large
matrices required to solve the finite element formulations were

necessary to make the method practical.

The advantages of the finite element method over the older finite

differences method are primarily:

1. the ease of arbitrary positioning of nodal points;

2. the potential to improve the result by increasing the number
of nodal elements;

3. an improvement in boundary value approximations;

4, the ease with which different shapes and sizes of elements

can be adopted.

Although triangles are the simplest shape function for
two-dimensional problems, and the tetrahedron for three, other
shapes such as rectangular or hexagonal can be utilized. The
obvious advantage of the finite element technique to engineers or
surgeons is the ability to correlate the shape and density of the

elements with the physical shape of the structure.

















































































































































































































































































































































































